Class 8 Maths Chapter 13 Direct and Inverse Proportions
NCERT Solutions For Class 8 Maths Chapter 13 Direct And Inverse Proportions, (Maths) exam are Students are taught thru NCERT books in some of state board and CBSE Schools. As the chapter involves an end, there is an exercise provided to assist students prepare for evaluation. Students need to clear up those exercises very well because the questions withinside the very last asked from those.
Sometimes, students get stuck withinside the exercises and are not able to clear up all of the questions. To assist students, solve all of the questions and maintain their studies without a doubt, we have provided step by step NCERT Solutions for the students for all classes. These answers will similarly help students in scoring better marks with the assist of properly illustrated Solutions as a way to similarly assist the students and answering the questions right.
NCERT Solutions For Class 8 Maths Chapter 13 Direct and Inverse Proportions
Class 8 Maths Chapter 13 Direct and Inverse Proportions
Exercise 13.1
Page No: 208
1.Following are the car parking charges near a railway station upto:
4 hours Rs.60
8 hours Rs.100
12 hours Rs.140
24 hours Rs.180
Check if the parking charges are in direct proportion to the parking time.
Solution:
Charges per hour:
C1 = 60/4 = Rs. 15
C2 = 100/8 = Rs. 12.50
C3 = 140/12 = Rs. 11.67
C4 = 180/24 = Rs.7.50
Here, the charges per hour are not same, i.e., C1 ≠ C2 ≠ C3 ≠ C4
Therefore, the parking charges are not in direct proportion to the parking time.
2. A mixture of paint is prepared by mixing 1 part of red pigments with 8 parts of base. In the following table, find the parts of base that need to be added.
Solution:
Let the ratio of parts of red pigment and parts of base be a/b .
Case 1: Here, a1 = 1, b1 = 8
a1/b1 = 1/8 = k (say)
Case 2: When a2 = 4 , b2 = ?
b2 = a2/k = 4/(1/8) = 4×8 = 32
Case 3: When a3 = 7 , b3 = ?
b3 = a3/k = 7/(1/8) = 7×8 = 56
Case 4: When a4 = 12 , b4 =?
b4 = a4/k = 12/(1/8) = 12×8 = 96
Case 5: When a5 = 20 , b5 = ?
b5 = a5/k = 20/(1/8) = 20×8 = 160
Combine results for all the cases, we have
3. In Question 2 above, if 1 part of a red pigment requires 75 mL of base, how much red pigment should we mix with 1800 mL of base?
Solution:
Let the parts of red pigment mix with 1800 mL base be x.
Since it is in direct proportion.
Hence with base 1800 mL, 24 parts red pigment should be mixed.
4. A machine in a soft drink factory fills 840 bottles in six hours. How many bottles will it fill in five hours?
Solution:
Let the number of bottles filled in five hours be x.
Here ratio of hours and bottles are in direct proportion.
6x = 5×840
x = 5×840/6 = 700
Hence machine will fill 700 bottles in five hours.
5. A photograph of a bacteria enlarged 50,000 times attains a length of 5 cm as shown in the diagram. What is the actual length of the bacteria? If the photograph is enlarged 20,000 times only, what would be its enlarged length?
Solution:
Let enlarged length of bacteria be x .
Actual length of bacteria = 5/50000 = 1/10000 cm = 10-4 cm
Here length and enlarged length of bacteria are in direct proportion.
x= 2cm
Hence the enlarged length of bacteria is 2 cm.
6. In a model of a ship, the mast is 9 cm high, while the mast of the actual ship is 12 m high. If the length if the ship is 28 m, how long is the model ship?
Solution:
Let the length of model ship be x .
Here length of mast and actual length of ship are in direct proportion.
x = 21 cm
Hence length of the model ship is 21 cm.
7. Suppose 2 kg of sugar contains 9×106 crystals. How many sugar crystals are there in
(i) 5 kg of sugar? (ii) 1.2 kg of sugar?
Solution:
(i) Let sugar crystals be x.
Here, weight of sugar and number of crystals are in direct proportion.
=
Hence the number of sugar crystals is
(ii) Let sugar crystals be x.
Here weight of sugar and number of crystals are in direct proportion.
Hence the number of sugar crystals is 5.4×106
8. Rashmi has a road map with a scale of 1 cm representing 18 km. She drives on a road for 72 km. What would be her distance covered in the map?
Solution:
Let distance covered in the map be x.
Here actual distance and distance covered in the map are in direct proportion.
x = 4 cm
Hence distance covered in the map is 4 cm.
9. A 5 m 60 cm high vertical pole casts a shadow 3 m 20 cm long. Find at the same time (i) the length of the shadow cast by another pole 10 m 50 cm high (ii) the height of a pole which casts a shadow 5 m long.
Solution:
Here height of the pole and length of the shadow are in direct proportion.
And 1 m = 100 cm
5 m 60 cm = 5×100+60 = 560 cm
3 m 20 cm = 3×100+20 = 320 cm
10 m 50 cm = 10×100+50 = 1050 cm
5 m = 5×100 = 500 cm
(i) Let the length of the shadow of another pole be x.
x= 600 cm = 6m
Hence length of the shadow of another pole is 6 m.
(ii) Let the height of the pole be x.
= 875 cm = 8 m 75 cm
Hence height of the pole is 8 m 75 cm.
10. A loaded truck travels 14 km in 25 minutes. If the speed remains the same, how far can it travel in 5 hours?
Solution:
Let distance covered in 5 hours be x km.
1 hour = 60 minutes
Therefore, 5 hours = 5×60 = 300 minutes
Here distance covered and time in direct proportion.
25x = 300(14)
x = 168
Therefore, a truck can travel 168 km in 5 hours.
Exercise 13.2
Page No: 213
1. Which of the following are in inverse proportion?
(i) The number of workers on a job and the time to complete the job.
(ii) The time taken for a journey and the distance travelled in a uniform speed.
(iii) Area of cultivated land and the crop harvested.
(iv) The time taken for a fixed journey and the speed of the vehicle.
(v) The population of a country and the area of land per person.
Solution:
(i) The number of workers and the time to complete the job is in inverse proportion because less workers will take more time to complete a work and more workers will take less time to complete the same work.
(ii) Time and distance covered in direct proportion.
(iii) It is a direct proportion because more are of cultivated land will yield more crops.
(iv) Time and speed are inverse proportion because if time is less, speed is more.
(v) It is a inverse proportion. If the population of a country increases, the area of land per person decreases.
2. In a Television game show, the prize money of Rs.1,00,000 is to be divided equally amongst the winners. Complete the following table and find whether the prize money given to an individual winner is directly or inversely proportional to the number of winners:
Solution:
Here number of winners and prize money are in inverse proportion because winners are increasing, prize money is decreasing.
When the number of winners are 4, each winner will get =100000/4 = Rs. 25,000
When the number of winners are 5, each winner will get =100000/5 = Rs. 20,000
When the number of winners are 8, each winner will get =100000/8 = Rs. 12,500
When the number of winners are 10, each winner will get = 100000/10 = Rs. 10,000
When the number of winners are 20, each winner will get = 100000/20 = Rs. 5,000
3. Rehman is making a wheel using spokes. He wants to fix equal spokes in such a way that the angles between any pair of consecutive spokes are equal. Help him by completing the following table:
(i) Are the number of spokes and the angles formed between the pairs of consecutive spokes in inverse proportion?
(ii) Calculate the angle between a pair of consecutive spokes on a wheel with 15 spokes.
(iii) How many spokes would be needed, if the angle between a pair of consecutive spokes is 40 degree ?
Solution:
Here the number of spokes are increasing and the angle between a pair of consecutive spokes is decreasing. So, it is a inverse proportion and angle at the centre of a circle is 360 degree .
When the number of spokes is 8, then angle between a pair of consecutive spokes = 360/8 = 45 degree
When the number of spokes is 10, then angle between a pair of consecutive spokes = 360/10= 36 degree.
When the number of spokes is 12, then angle between a pair of consecutive spokes = 360/12 = 30 degree.
(i) Yes, the number of spokes and the angles formed between a pair of consecutive spokes is in inverse proportion.
(ii) When the number of spokes is 15, then angle between a pair of consecutive spokes= 360/15= 24 degree.
(iii) The number of spokes would be needed = 360/40 = 9
4. If a box of sweets is divided among 24 children, they will get 5 sweets each. How many would each get, if the number of the children is reduced by 4?
Solution:
Each child gets = 5 sweets
24 children will get 24×5 = 120 sweets.
Total number of sweets = 120
If the number of children is reduced by 4, then children left = 24-4 = 20
Now each child will get sweets = 120/20 = 6 sweets
5. A farmer has enough food to feed 20 animals in his cattle for 6 days. How long would the food last if there were 10 more animals in his cattle?
Solution:
Let the number of days be x.
Total number of animals = 20+10 = 30
Here the number of animals and the number of days are in inverse proportion.
x=4
Hence the food will last for four days.
6. A contractor estimates that 3 persons could rewire Jasminder’s house in 4 days. If, he uses 4 persons instead of three, how long should they take to complete the job?
Solution:
Let time taken to complete the job be x.
Here the number of persons and the number of days are in inverse proportion.
¾ = x/4
3×4 = 4x
x = 3×4/4
x = 3
Hence, 4 persons will complete the job in 3 days.
7. A batch of bottles was packed in 25 boxes with 12 bottles in each box. If the same batch is packed using 20 bottles in each box, how many boxes would be filled?
Solution:
Let the number of boxes be x.
Here the number of bottles and the number of boxes are in inverse proportion.
12/20 = x/25
12×25 = 20x
x = 12×25/20 = 15
Hence 15 boxes would be filled.
8. A factory requires 42 machines to produce a given number of articles in 63 days. How many machines would be required to produce the same number of articles in 54 days?
Solution:
Let the number of machines required be x.
Here the number of machines and the number of days are in inverse proportion.
63/54 = x/42
63×42 = 54x
x = 63×42/54
x= 49
Hence 49 machines would be required.
9. A car takes 2 hours to reach a destination by travelling at the speed of 60 km/hr. How long will it take when the car travels at the speed of 80 km/hr?
Solution :
Let the number of hours be x.
Here the speed of car and time are in inverse proportion.
60/80 = x/2
60×2 = 80x
x = 60×2/80
10. Two persons could fit new windows in a house in 3 days.
(i) One of the persons fell ill before the work started. How long would the job take now?
(ii) How many persons would be needed to fit the windows in one day?
Solution:
(i) Let the number of days be x.
Here the number of persons and the number of days are in inverse proportion.
2/1 = x/3
6 = x
Or x = 6 days
(ii) Let the number of persons be x.
Here the number of persons and the number of days are in inverse proportion.
2/x = 1/3
6 = x
Or x = 6 persons
11. A school has 8 periods a day each of 45 minutes duration. How long would each period be, if the school has 9 periods a day, assuming the number of school hours to be the same?
Solution:
Let the duration of each period be x.
Here the number of periods and the duration of periods are in inverse proportion.
8/9 = x/45
8×45 = 9x
x = 40
Hence, duration of each period would be 40 minutes.
Benefits of NCERT Solutions for Class 8
NCERT Solutions for Class 8 contains extremely important points, and for each chapter, each concept has been simplified to make it easier to remember and increase your chances of achieving excellent exam results. Exam Preparation References Here are some tips on how these Solutions can help you prepare for the exam.
- This helps students solve many of the problems in each chapter and encourages them to make their concepts more meaningful.
- NCERT Solutions for Class 8 encourage you to update your knowledge and refine your concepts so that you can get good results in the exam.
- These NCERT Solutions For Class 8 are the best exam materials, allowing you to learn more about your week and your strengths. To get good results in the exam, it is important to overcome your weaknesses.
- Most of the questions in the exam are formulated in a similar way to NCERT textbooks. Therefore, students should review the Solutions in each chapter in order to better understand the topic.
- It is free of cost.
Tips & Strategies for Class 8 Exam Preparation
- Plan your course and syllabus and make time for revision
- Please refer to the NCERT Solutions available on the cbsestudyguru website to clarify your concepts every time you prepare for the exam.
- Use the cbsestudyguru learning app to start learning to successfully pass the exam. Provide complete teaching materials, including resolved and unresolved tasks.
- It is important to clear all your doubts before the exam with your teachers or Alex (an Al study Bot).
- When you read or study a chapter, write down algorithm formulas, theorems, etc., and review them quickly before the exam.
- Practice an ample number of question papers to make your concepts stronger.
- Take rest and a proper meal. Don’t stress too much.
Why opt for cbsestudyguru NCERT Solutions for Class 8 ?
- cbsestudyguru provide NCERT Solutions for all subjects at your fingertips.
- These Solutions are designed by subject matter experts and provide Solutions to every NCERT textbook questions.
- cbsestudyguru especially focuses on making learning interactive, effective and for all classes.
- We provide free NCERT Solutions for class 8 and all other classes.