Class 8 Maths Chapter 1 Rational Numbers
NCERT Solutions For Class 8 Maths Chapter 1 Rational Numbers, (Maths) exam are Students are taught thru NCERT books in some of state board and CBSE Schools. As the chapter involves an end, there is an exercise provided to assist students prepare for evaluation. Students need to clear up those exercises very well because the questions withinside the very last asked from those.
Sometimes, students get stuck withinside the exercises and are not able to clear up all of the questions. To assist students solve all of the questions and maintain their studies without a doubt, we have provided step by step NCERT Solutions for the students for all classes. These answers will similarly help students in scoring better marks with the assist of properly illustrated Solutions as a way to similarly assist the students and answering the questions right.
NCERT Solutions For Class 8 Maths Chapter 1 Rational Numbers
Class 8 Maths Chapter 1 Rational Numbers
1. Using appropriate properties find.
(i) -2/3 × 3/5 + 5/2 – 3/5 × 1/6
Solution:
-2/3 × 3/5 + 5/2 – 3/5 × 1/6
= -2/3 × 3/5– 3/5 × 1/6+ 5/2 (by commutativity)
= 3/5 (-2/3 – 1/6)+ 5/2
= 3/5 ((- 4 – 1)/6)+ 5/2
= 3/5 ((–5)/6)+ 5/2 (by distributivity)
= – 15 /30 + 5/2
= – 1 /2 + 5/2
= 4/2
= 2
(ii) 2/5 × (- 3/7) – 1/6 × 3/2 + 1/14 × 2/5
Solution:
2/5 × (- 3/7) – 1/6 × 3/2 + 1/14 × 2/5
= 2/5 × (- 3/7) + 1/14 × 2/5 – (1/6 × 3/2) (by commutativity)
= 2/5 × (- 3/7 + 1/14) – 3/12
= 2/5 × ((- 6 + 1)/14) – 3/12
= 2/5 × ((- 5)/14)) – 1/4
= (-10/70) – 1/4
= – 1/7 – 1/4
= (– 4– 7)/28
= – 11/28
2. Write the additive inverse of each of the following
Solution:
(i) 2/8
Additive inverse of 2/8 is – 2/8
(ii) -5/9
Additive inverse of -5/9 is 5/9
(iii) -6/-5 = 6/5
Additive inverse of 6/5 is -6/5
(iv) 2/-9 = -2/9
Additive inverse of -2/9 is 2/9
(v) 19/-16 = -19/16
Additive inverse of -19/16 is 19/16
3. Verify that: -(-x) = x for.
(i) x = 11/15
(ii) x = -13/17
Solution:
(i) x = 11/15
We have, x = 11/15
The additive inverse of x is – x (as x + (-x) = 0)
Then, the additive inverse of 11/15 is – 11/15 (as 11/15 + (-11/15) = 0)
The same equality 11/15 + (-11/15) = 0, shows that the additive inverse of -11/15 is 11/15.
Or, – (-11/15) = 11/15
i.e., -(-x) = x
(ii) -13/17
We have, x = -13/17
The additive inverse of x is – x (as x + (-x) = 0)
Then, the additive inverse of -13/17 is 13/17 (as 13/17 + (-13/17) = 0)
The same equality (-13/17 + 13/17) = 0, shows that the additive inverse of 13/17 is -13/17.
Or, – (13/17) = -13/17,
i.e., -(-x) = x
4. Find the multiplicative inverse of the
(i) -13 (ii) -13/19 (iii) 1/5 (iv) -5/8 × (-3/7) (v) -1 × (-2/5) (vi) -1
Solution:
(i) -13
Multiplicative inverse of -13 is -1/13
(ii) -13/19
Multiplicative inverse of -13/19 is -19/13
(iii) 1/5
Multiplicative inverse of 1/5 is 5
(iv) -5/8 × (-3/7) = 15/56
Multiplicative inverse of 15/56 is 56/15
(v) -1 × (-2/5) = 2/5
Multiplicative inverse of 2/5 is 5/2
(vi) -1
Multiplicative inverse of -1 is -1
5. Name the property under multiplication used in each of the following.
(i) -4/5 × 1 = 1 × (-4/5) = -4/5
(ii) -13/17 × (-2/7) = -2/7 × (-13/17)
(iii) -19/29 × 29/-19 = 1
Solution:
(i) -4/5 × 1 = 1 × (-4/5) = -4/5
Here 1 is the multiplicative identity.
(ii) -13/17 × (-2/7) = -2/7 × (-13/17)
The property of commutativity is used in the equation
(iii) -19/29 × 29/-19 = 1
Multiplicative inverse is the property used in this equation.
6. Multiply 6/13 by the reciprocal of -7/16
Solution:
Reciprocal of -7/16 = 16/-7 = -16/7
According to the question,
6/13 × (Reciprocal of -7/16)
6/13 × (-16/7) = -96/91
7. Tell what property allows you to compute 1/3 × (6 × 4/3) as (1/3 × 6) × 4/3
Solution:
1/3 × (6 × 4/3) = (1/3 × 6) × 4/3
Here, the way in which factors are grouped in a multiplication problem, supposedly, does not change the product. Hence, the Associativity Property is used here.
[Multiplicative inverse ⟹ product should be 1]
According to the question,
8/9 × (-7/8) = -7/9 ≠ 1
Therefore, 8/9 is n
0.3 = 3/10
[Multiplicative inverse ⟹ product should be 1]
According to the question,
3/10 × 10/3 = 1
10. Write
(i) The rational number that does not have a reciprocal.
(ii) The rational numbers that are equal to their reciprocals.
(iii) The rational number that is equal to its negative.
Solution:
(i)The rational number that does not have a reciprocal is 0. Reason:
0 = 0/1
Reciprocal of 0 = 1/0, which is not defined.
(ii) The rational numbers that are equal to their reciprocals are 1 and -1.
Reason:
1 = 1/1
Reciprocal of 1 = 1/1 = 1 Similarly, Reciprocal of -1 = – 1
(iii) The rational number that is equal to its negative is 0.
Reason:
Negative of 0=-0=0
11. Fill in the blanks.
(i) Zero has _______reciprocal.
(ii) The numbers ______and _______are their own reciprocals
(iii) The reciprocal of – 5 is ________.
(iv) Reciprocal of 1/x, where x ≠ 0 is _________.
(v) The product of two rational numbers is always a ________.
(vi) The reciprocal of a positive rational number is _________.
Solution:
(i) Zero has no reciprocal.
(ii) The numbers -1 and 1 are their own reciprocals
(iii) The reciprocal of – 5 is -1/5.
(iv) Reciprocal of 1/x, where x ≠ 0 is x.
(v) The product of two rational numbers is always a rational number.
(vi) The reciprocal of a positive rational number is positive.
Exercise 1.2
Page: 20
1. Represent these numbers on the number line.
(i) 7/4
(ii) -5/6
Solution:
(i) 7/4
Divide the line between the whole numbers into 4 parts. i.e., divide the line between 0 and 1 to 4 parts, 1 and 2 to 4 parts and so on.
Thus, the rational number 7/4 lies at a distance of 7 points away from 0 towards positive number line.
(ii) -5/6
Divide the line between the integers into 4 parts. i.e., divide the line between 0 and -1 to 6 parts, -1 and -2 to 6 parts and so on. Here since the numerator is less than denominator, dividing 0 to – 1 into 6 part is sufficient.
Thus, the rational number -5/6 lies at a distance of 5 points, away from 0, towards negative number line
2. Represent -2/11, -5/11, -9/11 on a number line.
Solution:
Divide the line between the integers into 11 parts.
Thus, the rational numbers -2/11, -5/11, -9/11 lies at a distance of 2, 5, 9 points away from 0, towards negative number line respectively.
3. Write five rational numbers which are smaller than 2.
Solution:
The number 2 can be written as 20/10
Hence, we can say that, the five rational numbers which are smaller than 2 are:
2/10, 5/10, 10/10, 15/10, 19/10
4. Find the rational numbers between -2/5 and ½.
Solution:
Let us make the denominators same, say 50.
-2/5 = (-2 × 10)/(5 × 10) = -20/50
½ = (1 × 25)/(2 × 25) = 25/50
Ten rational numbers between -2/5 and ½ = ten rational numbers between -20/50 and 25/50
Therefore, ten rational numbers between -20/50 and 25/50 = -18/50, -15/50, -5/50, -2/50, 4/50, 5/50, 8/50, 12/50, 15/50, 20/50
5. Find five rational numbers between.
(i) 2/3 and 4/5
(ii) -3/2 and 5/3
(iii) ¼ and ½
Solution:
(i) 2/3 and 4/5
Let us make the denominators same, say 60
i.e., 2/3 and 4/5 can be written as:
2/3 = (2 × 20)/(3 × 20) = 40/60
4/5 = (4 × 12)/(5 × 12) = 48/60
Five rational numbers between 2/3 and 4/5 = five rational numbers between 40/60 and 48/60
Therefore, Five rational numbers between 40/60 and 48/60 = 41/60, 42/60, 43/60, 44/60, 45/60
(ii) -3/2 and 5/3
Let us make the denominators same, say 6
i.e., -3/2 and 5/3 can be written as:
-3/2 = (-3 × 3)/(2× 3) = -9/6
5/3 = (5 × 2)/(3 × 2) = 10/6
Five rational numbers between -3/2 and 5/3 = five rational numbers between -9/6 and 10/6
Therefore, Five rational numbers between -9/6 and 10/6 = -1/6, 2/6, 3/6, 4/6, 5/6
(iii) ¼ and ½
Let us make the denominators same, say 24.
i.e., ¼ and ½ can be written as:
¼ = (1 × 6)/(4 × 6) = 6/24
½ = (1 × 12)/(2 × 12) = 12/24
Five rational numbers between ¼ and ½ = five rational numbers between 6/24 and 12/24
Therefore, Five rational numbers between 6/24 and 12/24 = 7/24, 8/24, 9/24, 10/24, 11/24
6. Write five rational numbers greater than -2.
Solution:
-2 can be written as – 20/10
Hence, we can say that, the five rational numbers greater than -2 are
-10/10, -5/10, -1/10, 5/10, 7/10
7. Find ten rational numbers between 3/5 and ¾,
Solution:
Let us make the denominators same, say 80.
3/5 = (3 × 16)/(5× 16) = 48/80
3/4 = (3 × 20)/(4 × 20) = 60/80
Ten rational numbers between 3/5 and ¾ = ten rational numbers between 48/80 and 60/80
Therefore, ten rational numbers between 48/80 and 60/80 = 49/80, 50/80, 51/80, 52/80, 54/80, 55/80, 56/80, 57/80, 58/80, 59/80
Benefits of NCERT Solutions for Class 8
NCERT Solutions for Class 8 contains extremely important points, and for each chapter, each concept has been simplified to make it easier to remember and increase your chances of achieving excellent exam results. Exam Preparation References Here are some tips on how these Solutions can help you prepare for the exam.
- This helps students solve many of the problems in each chapter and encourages them to make their concepts more meaningful.
- NCERT Solutions for Class 8 encourage you to update your knowledge and refine your concepts so that you can get good results in the exam.
- These NCERT Solutions For Class 8 are the best exam materials, allowing you to learn more about your week and your strengths. To get good results in the exam, it is important to overcome your weaknesses.
- Most of the questions in the exam are formulated in a similar way to NCERT textbooks. Therefore, students should review the Solutions in each chapter in order to better understand the topic.
- It is free of cost.
Tips & Strategies for Class 8 Exam Preparation
- Plan your course and syllabus and make time for revision
- Please refer to the NCERT Solutions available on the cbsestudyguru website to clarify your concepts every time you prepare for the exam.
- Use the cbsestudyguru learning app to start learning to successfully pass the exam. Provide complete teaching materials, including resolved and unresolved tasks.
- It is important to clear all your doubts before the exam with your teachers or Alex (an Al study Bot).
- When you read or study a chapter, write down algorithm formulas, theorems, etc., and review them quickly before the exam.
- Practice an ample number of question papers to make your concepts stronger.
- Take rest and a proper meal. Don’t stress too much.
Why opt for cbsestudyguru NCERT Solutions for Class 8 ?
- cbsestudyguru provide NCERT Solutions for all subjects at your fingertips.
- These Solutions are designed by subject matter experts and provide Solutions to every NCERT textbook questions.
- cbsestudyguru especially focuses on making learning interactive, effective and for all classes.
- We provide free NCERT Solutions for class 8 and all other classes.